Skip to main content

Data & Analytics

Data and analytics is the management of data for all uses and the analysis of data to drive business processes and improve business outcomes through more effective decision making and enhanced customer experiences.

Four Types of data analytics:

1.       Predictive data analysis

Predictive analytics may be the most commonly used category of data analytics. Businesses use predictive analytics to identify trends, connections between data, and relationship between data.

2.       Prescriptive data analytics

Prescriptive analytics is where AI and big data combine to help predict outcomes and identify what actions to take. Prescriptive analytics can help answer questions such as “What if we try this?” and “What is the best action?” You can test the correct variables and even suggest new variables that offer a higher chance of generating a positive outcome.

3.       Diagnostic data analytics

While not as exciting as predicting the future, analyzing data from the past can serve an important purpose in guiding your business. Diagnostic data analytics is the process of examining data to understand cause and event or why something happened. Techniques such as drill down, data discovery, data mining, and correlations are often employed.

Diagnostic data analytics help answer why something occurred.

Discover and alerts notify of a potential issue before it occurs.

4.       Descriptive data analytics

Descriptive analytics are the backbone of reporting—it’s impossible to have business intelligence (BI) tools and dashboards without it. It addresses basic questions of “how many, when, where, and what.”

This report sent monthly or generated and sent based on the business need.

Data analytics used in several industries like medical care, climate monitoring, research, cyber security, customer care, market campaigns, market promotions, insurance, and manufacturer warranty.

Data analysis process:


 Data analytics is performed to convert monolithic application to microservices application.

Data consistency and data integrity are critical challenges for managing data in the microservices architecture, as microservices manages its own data.

 Benefit of Data & Analytics:

·         Analyzing big data helped a large printer manufacturer to cut the attrition rate at their call centers by over 20% – a significant and tangible financial saving.

·         A large local bank by market capitalization in Asia that operates in 15 countries world wide was able to achieve higher customer engagement and increase customer satisfaction by 20% compared to a control group. The bank was able to benefit by responding to the customer actions, personal lifetime events and demographic profiles.

·         Businesses collect customer data from many different channels, including physical retail, e-commerce, and social media. By using data analytics to create comprehensive customer profiles from this data, businesses can gain insights into customer behavior to provide a more personalized experience.

 

Comments

Popular posts from this blog

Delivering a project within budget

 Here are some tips for delivering a project within budget: Set a realistic budget Define the project's scope and necessary resources, and create a budget that's realistic. Cost estimate Segment the project into smaller tasks and milestones to plan how to use resources and provide clarity. Divide the project plan Break down the project into tasks to avoid late deliverables and over-budget projects. Monitor progress Regularly track the project's progress to identify and prevent cost overruns. Use progress reports to compare actual costs to the budget. Anticipate and revise changes Communicate with stakeholders to identify and assess risks, and assign owners to each risk. Consider different scenarios Estimation can be difficult for complex projects with many potential outcomes. Tracking: Tracking time spent on tasks, Tracking expenses per project, and Using project management software. Use Historical Data Your project is likely not the first to try and accomplish a specific o...

Certified Enterprise Architect Professional (CEAP) - Module 5 - Architecture Frameworks

Architecture Frameworks: An Architecture Framework is a theoretical structure that has the purpose of developing, executing, and maintaining an Enterprise Architecture. Advantages of EA framework: Simplify Breaks down areas of the business process Organise business components and create and identify relationships between business Determine the scope Customization in the existing framework Disadvantages of EA framework: Need to follow process Provides only direction and not information It's based on goal and objective Need creativity and proactive thinking Zachman Framework: The Zachman Framework is a widely used model in Enterprise Architecture (EA) that provides a structured way to classify and organize an organization's information infrastructure by defining different perspectives from various stakeholders, allowing for a holistic view of the enterprise and facilitating alignment between business needs and technology solutions; essentially acting as a template to organize arc...

Bucket System project estimation

 The Bucket System is an Agile estimation technique that uses predefined buckets to group tasks or user stories by size, complexity, or effort.  Each bucket represents an estimate range, such as small, medium, or large.  The Bucket System is a group activity that helps align the team's understanding of work effort and complexity.  It's a good technique for quickly estimating a large number of items with a medium to large group of people. The effort of small, medium, or large bucket size arrived by team based on T-shirt sizing, PERT estimation or Planning Poker. Each bucket represents a level or an estimate range (e.g., small, medium, large). The team compares user stories to one another and places them into the appropriate buckets. This process is a group activity, promoting discussions and aligning the team's understanding of work complexity and effort. To use the Bucket System: Set up a row of cards, or buckets, with values in the Fibonacci sequence or other metho...